int. I Solids Structures, 1977, Vol. 13, pp. 877895, Pergamon Press. Printed in Great Britain

FORCED AXISYMMETRIC MOTIONS OF VISCOELASTIC
CYLINDRICAL SHELLS

S. F. FeLszEGHY
Hughes Aircraft Company, Canoga Park, CA 91304, U.S.A.

and

W. GorbpsmitH and J. L. Sackman
Coliege of Engineering, University of California, Berkeley, CA 94720, US.A.

(Received 26 October 1976; revised 17 February 1977)

Abstract—-The isothermal response of a viscoelastic cylindrical shell, of finite length, to arbitary axisym-
metric surface forces, initial conditions, and boundary conditions is considered within the linear theory of
thin shells. The problem is formulated with the effects of shear deformation and rotatory inertia included;
the viscoelastic properties are assumed to be isotropic and homogeneous. The response is first found
formally in terms of a causal Green's function. It is then shown that when Poisson’s ratio is constant, the
causal Green's function can be expanded in a series of orthonormal spatial eigenfunctions of an associated
elastic shell eigenvalue problem. The resulting solution for the general problem is an eigenfunction series
with Laplace transformed time-dependent coefficients. The general solution is applied to predicting the
motion of a uniform, simply-supported cylindrical shell, initially quiescent, which is subjected 1o a step
pressure moving with constant velocity. For this example, the relaxation function of the shell material in
uniaxial extension is taken to be that of a standard linear solid. The motions predicted by simpler shell
models, namely, shells with bending only and without bending, are also coasidered for comparison. Here,
the absolute values of the Fourier coefficients in the shell displacement series go to zero faster than the
inverse of the first or second power of positive integers when bending is excluded or included, respectively.
Numerical results are presented for a moderately long and relatively thick, nearly elastic, cylindrical shell.

NOTATION

a radius of shell middle surface

@, complex roots of P,

A, B, C, D constants
. Ey
¢, plate velocity, ¢, = \/ (;6:-;,3)
C(r), D{t) auxiliary relaxation functions defined by eqn (9)
¢; strain tensor
E(t) relaxation function in uniaxial extension
E, E©)
E. limE(t)

b
} dimensionless wave number
G(t) relaxation function in simple shear
G/ components of causal Green's function
; components of adjoint Green's function
& shell wall thickness
H(.) Heaviside step function
x shear correction factor
K constant
| dimensionless shell length, / = Lja
L shell length
Lf integro-differential operator components
L} formal adjoint of Ly
m(x, £} external couple per unit area acting about shell middie surface
M,(x,t) resultant moment per unit iéngth
Ni(x,1) axial stress resultant per unit length
No(x, 1) circumferential stress resultant per unit length
pix, 1) axial pressure on shell middle surface due to external load
P, cubic polynomial in s
q(x, ) radial pressure on shell midsurface due to external load
Qo pressure intensity
s Laplace transform parameter
t time
t; standard linear solid time constant
T large positive value of time
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u(x,t) axial displacement of shell middle surface
U; displacement vector components defined by eqn (15)
v velocity of moving step pressure
V dimensionless velocity of step pressure, V =v/c,
V.(x,t) transverse shear stress resultant per unit length
V dimensionless phase velocity
Vo dimensionless bar velocity, V,=/(1-»%)
Vin dimensionless minimum phase velocity
Vp dimensionless plate velocity, Vo =1
V, dimensionless modified shear velocity, V, =y
w(x, t) radial displacement of shell middle surface
W, displacement vector components
x axial coordinate of shell
a hlav(12)
Y V(1= )
8(..) Dirac delta function
8; Kronecker deita
£ Laplace transform operator, Zf(t)]=f5 f(t)e™* dt
A, u  Lamé constants
A(), u(t) relaxation functions, analogous to A and u
v Poisson’s ratio
¥(t) viscoelastic Poisson’s ratio
¢ dimensionless axial shell coordinate, £ = x/a
p mass density
0y stress tensor components
+ nondimensional time, 7 = tc,/a
& components of ath orthonormal eigenfunction
¥(x, 1) rotation angle of line initislly normal to shell middle surface
@ separation constant, circular frequency
0 waV(p(l- ), dimensionless circular frequency
Indices ik rs=123.

A bar over a symbo! denotes its Laplace transform. Repeated indices indicate summation, except as noted. Prime denotes
differentiation with respect to argument.

1. INTRODUCTION

The motion of uniform linearly elastic shells has been extensively studied; a recent example for
a shell of finite length[1] that included the effects of shear deformation and rotatory inertia
provided a solution, in the form of the sum of an eigenfunction series and a so-called quasistatic
solution that is applicable to a wide class of excitations and responses. Extensions of such
resuits to incorporate viscoelastic material behavior can be accomplished in some cases by the
use of the elastic-viscoelastic correspondence principle[2]. However, when the available
elastodynamic solution involves an eigenfunction expansion, such as for the cylindrical shell, it
is not at all obvious how this analogy should be applied. In such cases, it is usful to construct
the entire viscoelastic solution without relying directly upon the elastic resulits.

The forced axisymmetric motion of finite length viscoelastic cylindrical shells has been
studied in [3]. It is shown there that if Poisson’s ratio is constant, then a solution can be
constructed from the results of three associated analyses involving a quasi-static viscoelastic
shell problem, an elastic shell eigenvalue problem and a system of ordinary differential
equations. The reasons for assuming a constant Poisson’s ratio are here reexamined. With this
assumption, the solution for the viscoelastic shell can be obtained entirely in terms of the
eigenfunctions of the associated elastic shell eigenvalue problem. This circumvents the separate
solution of the quasi-static case which, in some instances, is of the same order of difficuity as
the original problem. Such a circumstance arises, for example, in determining the response of a
viscoelastic cylindrical shell to a moving axisymmetric pressure pulse which is treated as an
application of the derived general results.

The governing relations for a finite length viscoelastic cylindrical shell subject to axisym-
metric disturbances are formulated in Section 2. The shell equations include shear deformation
and rotatory inertia; it -is assumed that the response is isothermal and that the viscoelastic
properties, represented in integral form, are isotropic and homogeneous. The solution to the
general problem, developed in Section 3, utilizes the method presented in [4] for determining
the dynamic response of bounded, three-dimensional viscoelastic bodies; it is first constructed
formally in terms of a causal Green's function with the aid of a suitable form of Green's
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theorem. The task is therby reduced to finding the causal Green’s function which, in the present
case, constitutes a problem in free vibration. With the assumption of a constant Poisson’s ratio,
the method of separation of variables leads in a natural way to a causal Green’s function
expanded in terms of the spatial eigenfunctions associated with an elastic shell. An eigen-
function series solution having Laplace transformed time-dependent coefficients is then ob-
tained for the general shell problem.

In Section 4, the results derived in Section 3 are applied to a viscoelastic cylindrical shell
subject to an axisymmetric step pressure travelling with constant velocity. For illustrative
purposes, the shell material is assumed to correspond to a nearly elastic standard linear solid.
Solutions to the problem given by simpler shell models, that is, shells exhibiting only bending
(Love’s first approximation) and no bending (membrane theory) are also treated. The con-
vergence of the displacement series is examined for all three shell models. Numerical results
are then presented which illustrate the character of the shell motion over a wide range of load
speeds and the degree of adequacy of the simpler shell models.

2. STATEMENT OF THE GENERAL PROBLEM

The equations of motion for a finite iength viscoelastic cylindrical shell subject to axisym-
metric disturbances are presented with the effects of transverse shear deformation and rotatory
inertia included to allow for the possibility of the generation of a high frequency response
component. The dispersion curves of elastic cylindrical shells incorporating these factors have
been found to be in good correspondence with those from an exact three-dimensional model of
a hollow elastic cylinder[5); in particular, the close agreement at the higher frequencies is a
direct result of this inclusion. A model which gives a good description of the behavior of elastic
cylindrical shells was constructed by Hermann and Mirsky[5] and by Naghdi and Cooper[6]
(see also [7]) using somewhat different procedures. The viscoelastic shell equations can also be
derived by arguments that parallel either of these elastic derivations; in this study the
variational approach used in [6] and [7] will be employed.

With reference to Fig. 1, the dynamic shell equations are obtained by integrating the
three-dimensional stress equations of motion across the thickness of the shell after substituting
an assumed approximate displacement field. This yields

aNx *u ph’ a.p
Ph_f 120-—7 ps

Vi N ’w

@ Ph—r q, 4]
M, ph® (a’¢ la’u)

— V= +— +m.
T\ttt

The elastic shell stress-displacement relations based on the usual homogeneous, isotropic
stress-strain relations were deduced in [6) by means of a variational theorem in elastostatics due
to Reissner[8] using the same approximate displacement field referred to above in conjunction
with a consistent stress field.

For a homogeneous and isotropic linearly viscoelastic material, initially quiescent and stress
free, the isothermal constitutive equations are

oult) = 8.,[ -0 g 1y f -n2D,, @

where A(f) and u(t) are relaxation functions analogous to the Lamé constants in linear
elasticity. The corresponding shell stress-displacement relations can be obtained by a
generalization of Reissner’s variational theorem as developed by Gurtin[9]. An alternate
approach[2], followed here, is based on the identical structure of the Laplace transformed
equations of a quasi-static viscoelastic boundary value problem, and the equations of an
elastostatic boundary problem, if the usual requirements of the elastic-viscoelastic analogy are
observed. Reissner’s elastostatic variational theorem can then be reinterpreted as a quasi-static
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Fig. 1. Schematic view of shell with sign conveation.

viscoelastic one involving Laplace transformed field variables. The Euler equations and natural
boundary conditions derived from this theorem can thus be regarded as Laplace transformed
viscoelastic Euler equations and natural boundary conditions.

If the derivation in [6] is so interpreted, then the desired viscoelastic shell stress-displace-
ment relations follow immediately, since it is only necessary to replace the elastic field variables
by their Laplace transforms, and Young's modulus E and Poisson’s ratio » by sE(s) and si(s),
respectively, where s is the transform parameter and the superior bar denotes the transform.
The transformed Young’s modulus and Poisson’s ratio are defined as

E'=E(—3_L+2—ﬁ), and 7=— 3
A+i 2s(A +4)

A
-+

It also follows from the viscoelastic reinterpretation of the derivation in [6] that the natural
boundary condition for a viscoelastic shell are the same as those for an elastic shell, that is,
either the shell stress resultants or the shell displacements must be prescribed at the edges. In
summary, the stress-displacement relations for a viscoelastic shell are:

N, = Eh_ (28, 20 L’_a_i)
*T1-s%*\ox a 12adx)’
o= sEh (_w __q_q)
1= \a V)

)
- sEW’ oy 10
M. = Ba= (3?73?)
= = (oW -
Ve = sxGh (3;"‘ tﬁ),
and the boundary conditions are

u(x, t) or Ni(x,?),
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and

wix,t) or Vi(x, 1), (5)
and

¥(x,t) or M(x,1).

that must be prescribed on the shell edges of constant x. Above, x is the shear correction factor
which assumes the value 5/6 when the variational derivation is followed, and G equals g, the
transformed relaxation function in simple shear. It should be noted that terms of order equal to
or higher than h*/a* have been neglected in (4).

The boundary value problem of an axisymmetrically excited, viscoelastic cylindrical shell of
length L occupying the region 0 =< x < L can now be formulated. A solution for ¢ > 0 is sought
which satisfies the following governing equations and conditions in the specified domains:

Equations of motion: egns (1), for 0<x <L, t>0;
Stress-displacement relations: eqns (4), for 0<x<L;
Initial conditions, for 0 <x < L:

u(x,0)= u(x), wix,0)=wo(x), ¢¥(x,0)=do(x);
2 6,0 = dox), :—‘t’(x, 0) = Wo(x), i’aif (£, 0) = dholx). ©)

Boundary conditions (5) must be given at x =0 and x = L, for >0.

1t will be assumed henceforth that Ni(x, t), w(x, t) and M;(x, t) are the boundary conditions
specified at the shell edges. In addition, the following two transformed relaxation functions are
defined:

Cm—tyy, DusiC ™
1-s°p
With (7), the transformed stress-displacement relations (4) can be inverted to yield

ou(x, 'r) h’ aP(x, 1) h aw(x, 1)
=hL ce- [ arox ' 12a  drox ]d *a LD“ rranl ®

and the remaining stress resultants can be treated similarly.

Alternate statement of general problem
The general problem can be formulated equivalently by introducing the initial conditions as
surface forces, yielding

dN; da(e) ph ds(s) ’u ph 2y
s +ph[llo i +u06(t)] Pa [% +¢08(t)] Phs;r 12a 31'+PH(t),
Vi 2
Dt o[ 52+ ins ()] = o+ aH ) ©®

My pl,;s [(%+1;o)d3£t) (i )5(,)]_%(7;" %a 1)+ mH(),

for 0<x<L and —o<t<ew, where &6(t) is the Dirac delta function and H(t) is the
Heaviside function;

- ux,t—s) b w(x,t-5)1dCGs) . h dDGs)
N hE[ +12a ax ] ds ds+a[ wix, ¢ = 8) =g ds
N, = ﬂf wix, t — 5) 3EE dC(s) au(x, s)dD(s)ds’
a ax ds (10)
_h a.p(x, t- s) 1 du(x, t—s) dC(s)
M. = 12J’ [ Y o ] as 05
dG(s)
ds ds,

d+h

= xh [aw(xt s)
- —

3 + ¢¥(x, t—s)]

§S Vol. 13, No. 10—B
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for 0<x <L and —»<t <o, with w(x,t)=w(x,t)=¢(x,t)=0 for 0<x< L and ¢t <0, and
Ne(x, 1), wix, t) and Mi(x, ¢t) given at x=0 and x =L for t>0.

To simplify the analysis, the shell displacements u, w, ¢ are defined to be the components
U, i=1,2,3, of a displacement vector U, such that

U=u U=w, Us=4¢. an
Operators Ly, i,j =1, 2, 3 are also defined as

2
Lu—Ph"STz‘h —(—r)'( t-998,

L.2=-—h-f| M(x,t—s)———dD:s)ds

i) K (i) dC(s)
12a o 12ar =975

Ly=-Lp,
(... F) dG h dC
La=ph ;‘z)"'fh[ ;(1’( (-2 Dgs 42 L( It as,

a(...) dG(.v)
Ln=-uxh J: -3;-( e 1§,

i

L=
(12)

L3l=L13’
Lyp=—Ln,

gh__ 9%(...) [l_i a%(...) dC (S) J;’ dG(S)
Ly= 7 T 12k axz( xt—s)——ds+xh| (.)xt-89)——

Let Ni(U) denote N, evaluated with dispiacements U, i=1, 2, 3 in eqn (10), and let the
remaining stress resultants be similarly denoted. Then, adopting the indicial notation and
indicating summation from 1 to 3 by repeated indices, it follows that

LU = 2U| ﬂ' d UJ aNx(U)
= 7 2a o Tax

*Us an(U)+N.(U)

Lzltjf = ph 6‘2— x a (13)
___g_h_ 3’Us , 13°Ur\ _aMu(U)
Lty (at T ) ax T VU

In a manner entirely analogous to that followed in (4], one can define operators L which are
the formal adjoints of Ly For example,

3(... P dc
Lﬁ=ph-§;;—’-hj: Ty 530 g, (14)

Symbolicaily, the only difference between the Ly operator and its formal adjoint Lj is that the
t - s argument in L; becomes ¢+ s in L(] Next, define stress resultant “adjoints™ by

2
N* ()= hf [au(x,t+s) h a¢(x,t+s)]dC(s)

ax 12a ax ds ds

+§L w(x, t +5) Di) s, etc; (15)
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the difference between the starred and unstarred quantities is the same as for the L; and L}
operators. Let NT(W) denote Nf evaluated with displacement vector components W, and
denote the remaining stress resultant adjoints similarly, Then, it follows that

W, ph3 *Ws ANy (W)

W

LuWi=ph= e o ™ ax

P a’W; V(W) Ne(W)

Lz}ﬁ{f—'ph at: ax + a ¥ {iﬁ}
ph3(8 Ws 1a‘W,) M, (W)

LW = 12\’ "a o ax HVEW).

A suitable form of Green's theorem will be needed for the L; operator as applied to the
finite two-dimensional region 0<x < L, 6 <t < T, where T is a large positive number which, as
will be seen later, disappears in the final analysis. For this purpose, assume displacements
Ui(x, t)=0 for t <0 and Wi(x,1)=0 for > T, then

T L T
L dT L dx(WiLyU; - UL W) = j; QHIUN (W)= WiNo(U) + U2 VE (W) - Wa V(D)

+ UsME(W) - WsM(D)]IF

+hf de[Wx(a—q—' _"mi’.,'@_’z) U.("'W‘ K 3W3)

12a 12a ot
als 3Wz B (3U3 1 BUi)
.} am——— - —-—- — ——— —— —
(Ol T Rl vt

i (”ff"*i"f‘)]

an

3. SOLUTION TO THE GENERAL PROBLEM

Causal Green’s function
Define the causal Green’s function, G/’ (x, t|xo, to) for the region 0 < x < L, as the solution to
the following boundary value problem:

LyGi (x, tixs, to) = & (x — x0} 8 (t - to), (18)

for0<x,x< L and —o<¢, fo<o0;
G/ (x, tixo, to) = 0, (19)
for t<tpand 0<x, xo<L;
N:(G)=0, Gy=0, M(G)=0 (20)

at x =0 and x = L. The last set of relations constitutes the homogeneous form of the boundary
conditions specified for the general problem,

Above, the index r takes on the values 1, 2 and 3, §/{x)=0 when i r, and & (x) =5(x)
when i=r The function 8(x) is the one-dimensional Dirac delta function. Physically,
G/ (x, t]xo, o) is the ith displacement component, at x and ¢, due to a unit concentrated surface
force applied in the direction of the rth displacement component, at xo and f.

It will be shown that the general problem defined by eqns (9) and (10) can be solved in terms
of G'. For this purpose, Green’s theorem in the form of eqn (17) will be used with U as the
solution of these equations, and W an appropriate Green’s function. Since the Green's function
for the operator L}? will be needed and since this function will have to vanish for 1 = T, one is
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led to consider the adjoint problem
L} Gf (x, t]xo, to) = 8" (x — x0) 8(t — fo), @1
for 0<x, xo<L and —® <{, to <;

él‘(xy tlxoy to)-ov (22)
fort>toand 0<x, xo<L;

N(GH=0, G'=0, M (G")=0, (23)
at x =0 and x = L. Equations (23) are the adjoint boundary conditions of the general problem.
By letting Wi = G/’ (x, t|xo, to) and Ui = G/ (x, t|xz, 1;) in eqn (17) and repiacing (0, T) by
(T, T2), where T, <tq, t2 < T, one can show that
G-" (x2t tzley tﬁ) = Gl,(x()p ‘dev 12)- (24)
Dropping the “two"” subscripts in (24) gives
G/ (x, t|xo, to) = G/’ (xo, o}, 1). (25)

Another useful result follows from eqns (18)-(20) by making the change of variables ¢’ = ¢ - t,,
namely
G/ (x, t'XQ, to)=Gi (x, t - tdxty, 0). (26)
General solution i .
Assume T > f,, let U; be the solution of eqns (9) and (10), W; = G/ (x, t|xo, to) = G/ (xo, tolx, t)

and apply eqn (17). Then, by using the fact that 3G, /dt = — 3G,/3t and by making several
changes of variables as described in more detail in (4], one obtains

t L
Ulx, t)=~ L dr L délp (€, )G/ (x, t - 7|§ 0) + q(¢, 1) G/ (x, t — 7{£,0)

+m(& )G (x, £ — 76, 0)] + [o ar{Ne(6 DG (5,1~ 116,0)

Lt 4 2 -
- KhW(f, 1') L- [.a.g.'—(ﬁ_‘.;zif’_s)_', G'3(x’ lf S)] dG(s)

+ M6, r)a.’(x,r—fif.«»} H+ h L d&(f){[uo(f)*"l-z—a W(®)| G (x 16,0

dG/ (x, t}¢,0 dG(x, t|¢. 0
[uo(s)+12a m)]—o—‘f&ﬂf——’+ Wol§)GA(x, 1}g, 0) + wa(g) L 6 O Gz"“ 46, %, 46,0
k1. 1 3 h’ 1 dG/(x, z|.f, 0)
+ 35 [ ot + < e G203, 01+ 35 [ ot + 7 o) | 22, @n
Calculating the causal Green’s function
Consider the “free vibration” problem,
ON: _ , 3’u_ph’ 3’y
o Pt e (28)
Vi No_ , 3°w
ax a M
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for 0<x<L and t>0; N,, N, M; and V, are given by expressions such as (8) with initial
conditions

u(x,0=0, w(x0=0, P(x0=0;
Mo e i W W oe
i (x,0) = tig(x), % (x,0) = wo(x), o (x, 0) = o(x) 29

for 0 <x <L, and boundary conditions
Ni(x,t)=0, w(x, 1) =0, M:(x,)=0 (30)
atx=0and x=L, for t>0.
The solutions of the differential equations will be sought in the form of products of
functions of space and time. These separable solutions will be required to satisfy the boundary

conditions but not necessarily all the initial conditions. By superposition, all the initial
conditions will be satisfied later as well. Let

u(x, t) Xi(x)
[ w(x, t)] = {Xz(x)] T(t) (31
¥(x, t) Xa(x)

be a separable solution satisfying the boundary conditions; upon substituting eqn (31) in the
differential equations, one finds that the equations can be separated if

A+ ()= Ku(), (32

where K is a constant. This relation implies that Poisson’s ratio, »(f) = » is a constant. With
this hypothesis, one obtains through the usual separation of variables argument that

l 1 4 hz 2 hz
o (K2 X o X ) = o (Kot 5 ),

T 6+ X - ——,(5§+ ZXi) = po'Xs 33)
12(1 (X” X'") 2(1+ ae Xt X’)z’—lg(x3+ X‘)

where prime denotes differentiation. Further, the boundary conditions become

X0=Xi(L)=0, X:0)=XAL)=0, X3(0)=X5(L)=0 (34
and also
d dTr 1 &*T
[ Be-nTer=-5T2 35)

where o’ is a separation constant. The eigenvalue problem defined by eqns (33) and (34) is
precisely that for an elastic cylindrical shell having a Poisson’s ratio ». Hence, one can conclude
when the shell length is finite that there is a denumerable sequence of distinct and positive
eigenvalues, or natural frequencies,

(ﬂlz<¢i’22< . <‘,,"2< .

which are listed in increasing order. The corresponding eigenfunctions

‘bil(x)y ¢1z(x)’ sy Ql'"(x)’ s
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can be chosen to form a complete orthonormal set satisfying

L h h2
[ m(omor+2oror orar + wo; PO dx =8 (36)
0

By taking the Laplace transform of eqn (35), one obtains for each w,
SET = = 0 [5* Tiny = $Tm(0) — Tem (0. (37
Repeated indices that are not to be summed are placed with parentheses. Setting 7.(0) = 0, then
&M T, satisfies the differential equations, the boundary conditions and the first three of the

initial conditions (29). Leaving aside any questions regarding convergenc and term-by-term
differentiability, the same is true for

2 q,ng..[ Tx(0) 2].

n=i SE+S

where the T(0) are constants whkh are to be adjusted so as to satisfy the last three of the
initial conditions (29),

do(x) - "
[0} -5 {70 o |

do(x)) " "

@
= 2 m.’f«»{ } (38)

&;"

This equation will hoid if and only if
2 TJ k ”n h2 . n hz i n
ol (.,(0)—L o (o +—-m, + 0 4 ) d (9)

Thus, the formal solution of egns (28)-(30) is

wx,t){ =2 & TE— ®."(x)
sl ™ sonE+s” o (x))°
(40)

L hZ
{u(x, t)} ,. L hp(uo(b: +—¢o¢3 + wody" +E'uo®3 +—¢b¢1 )df [d’n"(x)]

For the causal Green's function G (x, t|xo,0), the differential equations, initial and
boundary conditions are identical to those of the “free vibration” problem above, except that
for the Green’s function G, the initial velocities are

o) =-2EE =0, o) T @1)
oh(a-332) k(535 9)
for G7', the initial velocities are
tiolx) =0, wx)ﬁ(—",;—"‘ﬁ, dolx) = 0, )

and for Gy, the initial velocities are
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[th component of Y, by employing the mth approximations of the already computed g
componts (g <!) of Y,. Thus

Y™=LY™+0, Y™ +F. m=12,... - (15)

where L, and U, are the lower and upper triangular matrices of E,, respectively. For Y, we
employ the values of Y, in the previous time step n — 1.

In order to show that the iterative process (15) converges, we employ theorem (3.4) in
Varga[10], which asserts that if the matrices I - E, are irreducibly diagonally dominant then the
iterative procedure (15) for the equations (I-E,) Y, = F, are convergent for any initial vectors

[(1)]

The matrices I — E, are indeed irreducible since it can be verified by examining the location
of the elements (13) in E, that their directed graphs[10] are strongly connected. This property
expresses the fact that in each one of the system of matrix eqns (11), the equations are coupled
and it is not possible to reduce any system to the solution of a lower order matrix equation.

It remains to show that the matrices 1-E, are diagonally dominant, i.e.

Y KE)ml=1 1=1,2,... (16)

with strict inequality for at least one [. Referring to the typical rows of E, given by (13), we
obtain the following inequalities

e=Ay2Ax <1 for Ay=2Ax,
2¢ =Ay/Ax =1 for Ay=Ax,
2¢]8| = (Ay/AX)|AJA +2p)| = (Ay/AX)A/A +2u) < 1. a”n

In the last inequality, we have utilized the inequalities A +2u/3>0, u >0 for the positive
definiteness of the strain energy of an isotropic material, and also the relation A >0 for real
materials. Consequently, the matrices I~ E, are diagonally dominant for Ay = Ax with strict
inequality in (16) for at least one /. Hence the iterative procedure (15) is convergent.

Having computed all the displacements at the boundary y =0 of the half-space, we can
calculate the stresses within the assumed contact region and verify that the previous two
requirements for the dynamic contact problem are satisfied. If the answer is affirmative, we
deduce that the correct solution at time ¢ = nA¢ has been obtained so that we can proceed to the
next time step ¢ = (n + 1)Af. In the case of a negative answer, we modify the assumed contact
point iy by passing to a neighboring point and repeat the process by imposing again the
boundary conditions (9), (10) with the new value of i, and solving the resulting equations for the
displacements on the boundary. This iterative process is continued until all the requirements as
well as the boundary conditions are satisfied simultaneously yielding the correct contact region.
The boundary conditions (3), (4) for a perfect adhesion are treated similarly.

APPLICATIONS
In the following we apply the proposed method of solution to the problem of indentation of a
half-space by a wedge-shaped punch and parabolic punch. In some situations analytical
solutions are known which can be employed in order to assess the accuracy and reliability of
the numerical method. All the results presented in this paper were obtained with the spatial
increments Ax = Ay = d/50, where d is a reference measure of length and the time increment
C]At/d =0.01.

(1) Smooth indentation by a wedge at a uniform speed

Consider a rigid wedge-shaped die which indent the half-space at a given constant speed V. It
is assumed that the indentation is smooth so that the boundary conditions are given by (2), (3)
with (5) and p(t)= V1.

By employing the self-similar method of solution, Robinson and Thompson[2], obtained an
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Forcing functions:

pix,)=m(x,)=0, for 0<x<L and t>0; (48)
q(x,t)=qoH(vt—x), for 0<x<L and 0<t<Ljv; (49)
q(x,t)=qe, for 0<x<L and Llvst (50)

Substitution of conditions (46)-(50) into (45) yields the Laplace transformed solution

L
. j e B, (£) de
O(x,s)=-gq0 3 = - @, (x). (51)
mt  S(swm E +57)

In order to invert (51), it is necessary to specify E(s). For this purpose, it is assumed that
E(t) = Ea+(Eo— Ex) ™", (52)

where E., E, and ¢, are constants. This representation of the relaxation function is known as
a standard linear solid. The s multiplied Laplace transform of (52) is

£e
sB(s)=— (53)
s+—
h
Let the cubic polynomial P.(s) be defined by
anl(E T
Pu(s) = o ( =+ Eos) +s (s + h), (54)
and write it in factored form as
3
Pu()= I (s - ain) (55)

where a;. are the complex roots of (54). Using (55), the solution can be inverted to yield

1
Qg+

U,(x,t)=-4oi?; - [ d!
i

ash 1311 (s- a,,.)/(s - ak,.)]

=Gk n

x [ L ‘o0 fo H(or - )¢t dr df] O (x). (56)

Before numerical results can be obtained from (56) it is necessary to solve the eigenvalue
problem defined by eqns (33) and (34). To this end, assume as prospective solutions of (33) the
functions

Xi=Acosmax/L, Xo=Bsinmmx/L, Xs=Ccosmmx(L, m=0,1,2,..., 57

where A, B, C are constants. It will be observed that the assumed solutions satisfy the
boundary conditions (34). Substitution of eqns (57) into (33) gives three linear homogeneous
equations in the three unknown constants A, B and C. For a nontrivial solution of these
equations to exist, the determinant of the matrix formed by the coefficients of A, B and C must
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vanish. This leads to the characteristic equation

2.2 2
“-az)ﬁﬁ’[%'?’"(2+?23(1'32)'?(1-&2)43—5](}‘

44 2.2 ?
+{mlzw (1+272)(l~a2)+1n77£[2(1““2)'*%5(1_“1")“V(V+yz)]

2 & & & & 2 22
+-§,}92~{”‘—I§y2(1~a‘)+%?—{1~a’~u(p+272}3+f-”-t§’;§'-(1-p’)}=0, (58)

where the following nondimensional parameters have been introduced:

o’= L L *=5(1-y),  O=wavip(l-») (59
12a% a T2 ? :

For each value of m, (58) gives three distinct positive roots (eigenvalues) for 0°. The
eigenvalues corresponding to all m =1 can be arranged in an increasing sequence and labelled
with the single index n so that

O2<l< - <i< -, (60)

The eigenvalues given by (58) for m =0 are left out in (60) because the corresponding
eigenfunctions have zero radial displacement components and so do not contribute to the series
solution, eqn (56). It should be noted that the ordering of the eigenvalues in (60) makes the
harmonic number m a function of the index n.

For every n, the three linear homogeneous equations in A, B and C provide the three
constants

mal(a®y + v%)

B T

(61)

mavi

Ap = g a*aCh,
N -m=

where B, was arbitrarily set equal to one. The above constants in conjunction with assumed
solutions {57) vield the following orthonormal eigenfunctions satisfving (36):

&," = a, cos —"-‘—FE, ®," = b, sin ,',’_'{_{ Oy = ¢, COS% 62)
where
ax = Ad /Dy, bs = By\/ D, cn=Co\/Dn .
and
JPL (2 B o oo B
D=2 (A,. + 5G4 By +6aA..C..).

The step remaining is the evaluation of the double integral in (56}, For 0 =<t < Lfv, the double
integral gives

LL ®,"(£) L t H(vr— &) %" dr dg = ~ (%)[W}{% (1 -cos L".i”’.?j)

Qk,n
¢, mrot mm}z
4 e i) —— — g%t }
@ L 'EEEIO e €
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and for t = L/v,

| “o@) | Hor- )¢ dr dg = - () [:(_‘,:,_T{_;)ﬂ] fctt- -
Laia
+L£'E!v“(l e“"‘)"’—r(—l) [eatt=tLion 1]} (64)

where m, as will be recalled, is a function of n. Thus, the complete solution to the viscoelastic
shell problem posed above is given by eqn (56), in conjunction with (63) and (64).

It is now an easy matter to formulate the solutions to the same problem employing simpler
shell theories. All that is required is to find the appropriate eigenvalues and eigenfunctions to be
used in expressions such as (54) and (56). For instance, if shear deformation and rotatory inertia
are neglected in (1) and (8) then the shell equations correspond to the equations commonly
referred to as Love’s first approximation, the viscoelastic form of which are

N, ou
e -Ph—r,

aVe No 3w
—= +
~ a ph-—.r q (65)

My oo,
ox

with

Ne=h f ce - "“("")d oA f D(t- ———"“’g")df, 66)

2
No=2 f C-n 22D ge s L pe-n e,
- arax

3

Mx—"—L c@- T)Ta:a—jdf,

and with the boundary conditions:

W(O, t) = Nx(o, t) = MX(o, t) = 0,
w(L, )= Nx(L, t)= Mc(L, )= 0. (67)

The separation of variables argument yields the characteristic equation

4 4 2.2 4 4 2
n‘—n’("';ﬂ“ +'"7,"+1) "'F" ("';2" +1—v’)=o, (68)
and the orthonormal eigenfunctions,
o =q, COSEEE,
®," = b, sin _’”_Z-_‘ (69)

where
= A;J\/Dn, bn = BIJ\/DM

marvi

Bl Ao
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and
phL
2

(Aal+ ByY).

If bending is also neglected, then the shell equations correspond to the membrane equations,
the viscoelastic form of which are

aN: _ ha’a
ax P
No azw
Ne_ piw. 70)
2 Phgrta (

with N: and N, identical to the expressions in (66); the boundary conditions are
N0, )= N, (L, 1) =0. n

The separation of variables argument leads to the characteristic equation

2.2 2.2
a‘-nz(:+-”ip’l)+97}’-(1—v2)=o 12)
and the formulae for the orthonormal eigenfunctions are the same as eqns (69).

Calculated results in dimensionless form are presented that show the character of the shell
motion over a wide range of load speeds and the extent of agreement of the various shell
models. The governing equations can be put in dimensionless form if the variables having
dimensions of length, namely, u, w and x, are divided by the shell radius a, time ¢ is divided by
radius over plate velocity alc,, where c, =+/(Eo/[p(1 - »*)]), and the stress resultants such as
N; are divided by Eoh/(1— v%); further, let

gu-éx-, 78225, V‘f‘. (3)
(4

The results are based on a specific shell configuration with properties »=0.3, /= L/a = 10,
hla = 0.1, E</Es = 0.7, c,ti/a = 100 and subject to a dimensionless pressure, goa(1 — v*)/(Eoh) =
—0.00091.

The radial motions predicted at £ = 5.2 by the three shell models are shown in Figs. 2 and 3.
The significance of the load speeds is related to the velocity of propagation of harmonic waves
in infinitely long elastic shells with a Young’s modulus E,, but otherwise the same physical and
geometric properties as the viscoelastic tube. The normalized velocity of propagation of such
harmonic waves can be obtained for the most exact shell model from (58) and for the simpler
models from (68) and (72) upon substituting

Aa

E11"=;r’, Q=i (74)

where dimensionless phase velocity V and wave number f correspond to the dimensionless
harmonic wave phase, f(Vr — £). With the assumed shell properties, one obtains the dispersion
curves shown in Fig. 4. The most exact shell model yields three modes of propagating harmonic
waves for a fixed wave number, The dispersion curves for two of the three modes begin at an
infinitely large phase velocity, when the wave number is zero, and then drop asymptotically to
V, = 1, the dimsionless plate velocity, as the wave number approaches infinity. The dispersion
curve for the remaining mode starts at Vo =+/(1 — »%), the dimensionless bar velocity, and with
increasing wave number, it drops to a minimum phase velocity Vimin=V(Qa(1 - »)'?), and then
rises asymptotically to the modified shear velocity, V.= v = 4/{{(x(1 ~ ¥)/2) as the wave number
goes to infinity. Load speeds equal to Vmin and V, are of particular interest for the most exact
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Fig. 2. Dimensionless radial displacement wia vs dimensionless time, at station & = 5.2, for pressure front

spesds V < V,. Notes: (—), With shesr deformation (x » $/6) and rotatory inertia; (. ), Love theory;
(—=~—), Membrane theory; » =03, Lia= lo,_ohgo-; 0.1, BIE, =07, ¢,,ja =100, gea(l— #)(Eph)=
1.

shell model because at these speeds the transient response of simply-supported, semi-infinite,
elastic shells becomes unbounded as shown in {10}. The simpler shell models have dispersion
curves with only two branches. The upper branches are in excellent agreement with the most
exact model; the lower branches agree at long wavelengths but differ greatly from each other
and the most exact model in the short wavelength region.

The responses in Figs. 2 and 3 were calculated by truncating the eigenfunction series (56) for
all three models at 100 terms when V# Vo, and 200 terms when V = V. The adequacy of this
representation can be deduced from the dispersion curves as follows. Corresponding to each
cigenvalue Q,, one can find from (74) a pair of values which will be called V. and /.. If these
values are plotted for the first twenty eigenvalues on top of the dispersion curves, say for the
most exact shell model, one gets the points shown in Fig. 4. It can be demonstrated that the
most significant contribution in the eigenfunction series comes from the low frequency terms
for which the ratio VIV, is nearest to 1. It is clear from Fig. 4 that when the eigenfunction
series is truncated beyond 20 terms, the dominant terms in the series are accounted for, at least
in the cases of the most exact shell model and Love’s model. Beyond the dominant terms, the
absolute values of the Fourier coefficients in the displacement series solutions for these two
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Fig. 3. Dimensionless radial displacement w/a vs dimensionless time at station ¢ = 5.2, for pressure front
speeds V > V,. Notes: (——), With shear deformation (x = 5/6) and rotatory inertia; (—~~——~~ , Love theory;
(—=-—), Membrane theory; »=0.3, Lia =10, hla =0.1, EE,=0.7, c,t)Ja =100, gea(1- »)I(Eoh)=
~0.00091.

models go to zero at least as the inverse of the square of the harmonic numbers; thus, the series
converge absolutely and uniformly. By summing the stated number of terms, an accuracy of
better than five decimals was achieved.

The membrane model requires special consideration because the lower branch of its
dispersion curves approaches asymptotically the zero phase velocity line as the wave number
goes to infinity. This property manifests itself also in the arrangement of the eigenvalues {}, by
causing an infinite number of them to form, strarting with the lowest one, a strictly increasing
sequence that converges to the finite limit point v/(1 - »?). As a result, the eigenfunction series
as constructed in (56) does not converge to the solution of the membrane problem because the
series excludes the eigenfunctions whose eigenvalues belong to the upper branch of the
dispersion diagram; instead, these terms must be added separately. In the calculations, the total
number of eigenvalues considered was arbitrarily split equally between the two branches. The
absolute values of the Fourier coefficients associated with the eigenvalues belonging to the
upper dispersion curve go to zero at least as the inverse of the square of the harmonic numbers;
those associated with the lower branch go at least as the inverse. By summing the stated
number of terms in the displacement series, an accuracy of only five decimals was achieved.
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From Figs. 2 and 3, it is seen that all three shell models predict small radial motions before
the arrival of the pressure front at £ =5.2. Following passage of the front, the three models
predict oscillatory radial motion at load speeds V> Vein. At speeds V < Vo, the most exact
and Love models predict a nearly static response while the membrane model predicts large
oscillations. Until disturbances initiated from the far end of the shell arrive at £=5.2, the
oscillations can be characterized at load speeds V other than Vs as steady-state harmonic
waves propagating with phase velocity V and wavelength 2=/, corresponding to V/V, = 1. The
foregoing is true also at V = Ve but only for the membrane shell. The most exact and Love
models by contrast predict oscillations at this speed that decay immediately behind the pressure
front. This results from the fact that the radial disturbances generated have a group velocity
nearly equal to Ve and so do not spread as rapidly behind the pressure front as at other load
speeds. Since the static responses show little creep and since the largest oscillation amplitudes
do not decrease appreciably with time, the response can be said to be nearly elastic at all load
speeds. At load speeds Vi and Vi, critical for semi-infinite elastic sheils, no extraordinarily
large radial displacements occur.

From the above resuits and from the relation of the dominaat term in the series solutions to
the dispersion curves, it follows that at load speeds V = V,, the responses of all three models
are virtually the same. Thus, at these load speeds, the moving load problem can, for all practical
purposes, be studied with the membrane theory alone. At Vmin< V < V,, there are significant
differences between the responses of all three models and, therefore, at these speeds, it is
necessary to account for shear deformation and rotatory inertia. At speeds V < Vi, the Love
and most exact models agree, and hence, at such low load speeds the Love model is sufficient
for analyzing the moving load problem. It should perhaps be remarked that the foregoing
observations were for a nearly elastic shell. It was found that the acceptability of the membrane
model improves at load speeds V < V, with increasing material dissipation.
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